removable singularity - ترجمة إلى الروسية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

removable singularity - ترجمة إلى الروسية

REMOVABLE SINGULARITY OF A HOLOMORPHIC FUNCTION IS A POINT AT WHICH THE FUNCTION IS UNDEFINED, BUT IT IS POSSIBLE TO REDEFINE THE FUNCTION AT THAT POINT IN SUCH A WAY THAT THE RESULTING FUNCTION IS REGULAR IN A NEIGHBOURHOOD OF THAT POINT
Removable singular point; Riemann's theorem on removable singularities
  • 1=''x'' = 2}}

removable singularity         

общая лексика

устранимая особенность

removable disk         
EXCHANGEABLE COMPUTER STORAGE MEDIUM THAT IS READ OR WRITTEN USING A DEDICATED STORAGE DEVICE WHICH IS EXTERNAL OR BUILT INTO THE COMPUTER
Removable medium; Removeable media; Removable disk; Removable Disk Storage; Removable storage; ⏏

общая лексика

сменный диск

тип магнитного или магнитооптического диска, который может быть снят с дисковода жёстких дисков, что позволяет с одним дисководом использовать несколько дисков

singular equation         
  • The [[reciprocal function]], exhibiting [[hyperbolic growth]].
IN GENERAL A POINT AT WHICH A GIVEN MATHEMATICAL OBJECT IS NOT DEFINED, OR A POINT OF AN EXCEPTIONAL SET WHERE IT FAILS TO BE WELL-BEHAVED IN SOME PARTICULAR WAY, SUCH AS DIFFERENTIABILITY
Singularity (maths); Singularity (math); Singulariti (math); Singular equation; Mathematical singularities; Coordinate singularities; Finite-time singularity; Finite-time singularities; Mathematical singularity

математика

сингулярное уравнение

ويكيبيديا

Removable singularity

In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.

For instance, the (unnormalized) sinc function

sinc ( z ) = sin z z {\displaystyle {\text{sinc}}(z)={\frac {\sin z}{z}}}

has a singularity at z = 0. This singularity can be removed by defining sinc ( 0 ) := 1 , {\displaystyle {\text{sinc}}(0):=1,} which is the limit of sinc as z tends to 0. The resulting function is holomorphic. In this case the problem was caused by sinc being given an indeterminate form. Taking a power series expansion for sin ( z ) z {\textstyle {\frac {\sin(z)}{z}}} around the singular point shows that

sinc ( z ) = 1 z ( k = 0 ( 1 ) k z 2 k + 1 ( 2 k + 1 ) ! ) = k = 0 ( 1 ) k z 2 k ( 2 k + 1 ) ! = 1 z 2 3 ! + z 4 5 ! z 6 7 ! + . {\displaystyle {\text{sinc}}(z)={\frac {1}{z}}\left(\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}\right)=\sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{(2k+1)!}}=1-{\frac {z^{2}}{3!}}+{\frac {z^{4}}{5!}}-{\frac {z^{6}}{7!}}+\cdots .}

Formally, if U C {\displaystyle U\subset \mathbb {C} } is an open subset of the complex plane C {\displaystyle \mathbb {C} } , a U {\displaystyle a\in U} a point of U {\displaystyle U} , and f : U { a } C {\displaystyle f:U\setminus \{a\}\rightarrow \mathbb {C} } is a holomorphic function, then a {\displaystyle a} is called a removable singularity for f {\displaystyle f} if there exists a holomorphic function g : U C {\displaystyle g:U\rightarrow \mathbb {C} } which coincides with f {\displaystyle f} on U { a } {\displaystyle U\setminus \{a\}} . We say f {\displaystyle f} is holomorphically extendable over U {\displaystyle U} if such a g {\displaystyle g} exists.

What is the الروسية for removable singularity? Translation of &#39removable singularity&#39 to الروس